GEOMETRY QUALIFYING EXAM, FALL 2022

Instructions: Each problem is worth 20 points. Your grade will be determined by your 5 best solutions. You may submit more than 5, but are not required to do so.
(1) (a) Give an example of a smooth map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ for which there exists $p \in \mathbb{R}^{2}$ with nonzero Jacobian matrix $J_{f}(p)=\left[\frac{\partial f^{i}}{\partial x^{j}}(p)\right]$ satisfying $\operatorname{det} J_{f}(p)=0$.
(b) Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a smooth map satisfying the Cauchy-Riemann equations:

$$
\frac{\partial f^{1}}{\partial x^{1}}=\frac{\partial f^{2}}{\partial x^{2}} \quad \text { and } \quad \frac{\partial f^{1}}{\partial x^{2}}=-\frac{\partial f^{2}}{\partial x^{1}}
$$

Prove that for $p \in \mathbb{R}^{2}, J_{f}(p)=0$ if and only if $\operatorname{det} J_{f}(p)=0$.
(c) Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ satisfies the Cauchy-Riemann equations. Prove that at points $p \in \mathbb{R}^{2}$ where f is a local-diffeomorphism, the local inverse of f also satisfies the Cauchy-Riemann equations.
(2) Let $M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z-x^{2}-y^{2}=1\right\}$.
(a) Prove M is a regular submanifold that is diffeomorphic to \mathbb{R}^{2}.
(b) Prove that $\omega=z d x \wedge d y \in \Omega^{2}\left(\mathbb{R}^{3}\right)$ is not an exact two form on \mathbb{R}^{3}.
(c) Prove the restriction $\omega_{\left.\right|_{M}} \in \Omega^{2}(M)$ is an exact two form on M.
(3) Let $X=-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y} \in \chi\left(\mathbb{R}^{2}\right)$.
(a) Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(x, y)=e^{x^{2}+y^{2}}$. Prove if $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is smooth, then

$$
X(g)=0 \Longleftrightarrow X(f g)=0
$$

(b) Suppose $Y \in \chi\left(\mathbb{R}^{2}\right)$ is a smooth vector field having the same restriction as X to the unit circle. Show there exists $p \in \mathbb{R}^{2}$ such that $Y(p)=0$.
(4) Let $V, W \in \chi\left(\mathbb{R}^{3}\right)$ be smooth vector fields defined by

$$
\begin{gathered}
V=\frac{\partial}{\partial x}+y \frac{\partial}{\partial z} \\
W=\frac{\partial}{\partial y} .
\end{gathered}
$$

(a) Determine the smooth functions $f_{i}: \mathbb{R}^{3} \rightarrow \mathbb{R}, i \in\{1,2,3\}$, defined by

$$
[V, W]=f_{1} \frac{\partial}{\partial x}+f_{2} \frac{\partial}{\partial y}+f_{3} \frac{\partial}{\partial z}
$$

(b) Show for a smooth function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}, V(f)=W(f)=0$ if and only if f is a constant function.
(5) For each $\theta \in \mathbb{R}$ and $\lambda \in(0, \infty)$ define diffeomorphisms

$$
R_{\theta}, D_{\lambda}: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R}^{2} \backslash\{0\}
$$

by

$$
R_{\theta}(x, y)=(\cos (\theta) x+\sin (\theta) y,-\sin (\theta) x+\cos (\theta) y)
$$

and

$$
D_{\lambda}(x, y)=(\lambda x, \lambda y)
$$

Determine the smooth functions $f: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R}$ such that the smooth 2 -form $\omega=f d x \wedge d y$ has the property that for every $(\theta, \lambda) \in \mathbb{R} \times(0, \infty)$, $R_{\theta}^{*}(\omega)=\omega$ and $D_{\lambda}^{*}(\omega)=\omega$.
(6) Let $X \in \chi\left(\mathbb{R}^{2}\right)$ be the smooth vector field defined by

$$
X=x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}
$$

(a) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the smooth function defined by $f(x, y)=x y$. Show $X(f)=0$.
(b) Suppose that $c(t)$ is an integral curve. Explain why part (a) implies $f(c(t))$ is constant as a function of t.
(c) Let $p_{0}=\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$. Find the maximal integral curve $c(t)$ of X with $c(0)=p_{0}$. Verify that $f(c(t))$ is constant in t directly using your formula for the integral curve $c(t)$.
(7) Let $\lambda \in \mathbb{R}$ and let $F_{\lambda}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $F(x, y)=\left(x e^{y}-\lambda y, x e^{y}+y\right)$.
(a) Determine those $\lambda \in \mathbb{R}$ for which F_{λ} is a diffeomorphism of \mathbb{R}^{2}.
(b) Determine those $\lambda \in \mathbb{R}$ for which F_{λ} is an orientation preserving diffeomorphism of \mathbb{R}^{2}.
(8) Let M be a smooth manifold. Let $\omega \in \Omega^{1}(M)$ and let $f: M \rightarrow \mathbb{R}$ be a smooth and positive function. Show that if $d(f \omega)=0$, then $\omega \wedge d \omega=0$.

